
Available online at www.sciencedirect.com

Procedia Engineering 00 (2016) 000–000
www.elsevier.com/locate/procedia

Fast and robust mesh generation on the sphere –
Application to coastal domains.

Jean-François Remaclea, Jonathan Lambrechtsa

aUniversité catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), Bâtiment Euler, Avenue Georges Lemaı̂tre 4,
1348 Louvain-la-Neuve, Belgium

Abstract

This paper presents a fast and robust mesh generation procedure that is able to generate meshes of the earth system (ocean and
continent) in matters of seconds. Our algorithm takes as input a standard shape-file i.e. geospatial vector data format for geographic
information system (GIS) software. The input is initially coarsened in order to automatically remove unwanted channels that are
under a desired resolution. A valid non-overlapping 1D mesh is then created on the sphere using the Euclidean coordinates system
x, y, z. A modified Delaunay kernel is then proposed that enables to generate meshes on the sphere in a straightforward manner
without parametrization. One of the main difficulty in dealing with geographical data is the over-sampled nature of coastline rep-
resentations. We propose here an algorithm that automatically unrefines coastline data. Small features are automatically removed
while always keeping a valid (non-overlapping) geometrical representation of the domain. A Delaunay refinement procedure is
subsequently applied to the domain. The refinement scheme is also multi-threaded at a fine grain level, allowing to generate about
a million points per second on 8 threads. Examples of meshes of the Baltic sea as well as of the global ocean are presented.
c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of IMR 25.

Keywords: Delaunay triangulation on the sphere, Geophysical flows, Parallel meshing

1. Introduction

Traditional ocean models are based on finite differences schemes on Cartesian grids [1]. It is only recently that un-
structured meshes have been used in ocean modeling [2,3,4], essentially using finite elements. One of the advantages
of unstructured grids is their ability to conform to coastlines.

As unstructured grid ocean models began to appear, mesh generation algorithms were either specifically developed
or simply adapted from classical engineering tools. [5] use the mesh generation tools of [6] on several sub-domains to
obtain a mesh of the world ocean, aiming at global scale tidal modeling. Further, [7] use a higher resolution version
of the same kind of meshes with the state of the art FES2004 tidal model. [8] give two algorithms to generate meshes
of coastal domains, and use them to model tides in the Gulf of Mexico. [9] show high-resolution meshes of the Great
Barrier Reef (Australia). At the global scale, [10] and [11] developed specific algorithms to obtain meshes of the
world ocean. More recently, we have developed a proper CAD model of ocean geometries [12]. This model relies on

∗ Jean-François Remacle.

1877-7058 c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of IMR 25.

2 J.-F. Remacle / Procedia Engineering 00 (2016) 000–000

the stereographic projection of the sphere which is conformal i.e. it conserves angles. This approach has been quite
successful up to now: we and other teams have applied it to numerous coastal domains [13,14].

Our CAD approach has two major drawbacks. First, at least two maps are required to cover the whole sphere,
making it awkward for atmosphere simulations for example. Then, using splines is maybe not the most robust/natural
manner for describing coastlines: geographical information systems provide description of coastlines as series of
non-overlapping closed polygons and using splines may lead to intersections.

Here, a new approach that addresses both issues is proposed.
A modified Delaunay kernel is first presented that allows to generate meshes on the unit sphere. Based on our

recent paper [15], a multi-threaded version of this new kernel has been implemented that allows to triangulate over
one million points per second on the sphere on a standard quad-core laptop. This new approach does not rely on any
parametrization and has all the proof structure of the usual Delaunay kernel (proof of termination, angle-optimality,
polynomial complexity).

In this new approach, the most refined representation of coastlines available in the geographical system is used
as input . A constrained Delaunay mesh of the whole data set is created using the new Delaunay procedure. This
first mesh allows to automatically and robustly remove from the domain any water channel that has a width that is
smaller than a given threshold (this threshold being possibly variable in space). This first step leads to a coarsened
version of the shapes where locally small features have been removed. We show that our procedure produces a valid
(non-overlapping) boundary description of the domain. Then, a one-dimensional mesh is created using the coarse
geometry. Finally, a multi-threaded version of the edge-based Delaunay refinement procedure of [16] has been used
to saturate the domain with points and triangles.

The developments that are presented here have been released as a self consistent open source code that can be used
as a standalone program or that can be plugged in other software’s such as Gmsh [17] or QGIS [18].

2. Delaunay triangulation on the sphere

Here we consider the unit 3D sphere S centered at the origin o(0, 0, 0): S = {x(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.
Any section of a sphere by a plane is a circle. We distinguish great circles that are sections of a sphere that diameter
is equal to the diameter of the sphere and small circles that are any other section.

Consider two points p1 and p2 on the sphere. Geodesics are the shortest path between points on the sphere. It is
well known that geodesics of the sphere are segments of a great circle. The geodesic distance between p1 and p2 is
the length of the great circular arc joining p1 and p2. We call it d(p1,p2).

A spherical triangle T1(p1,p2,p3) (see Figure 1) is a figure formed on the surface of a sphere by three great
circular arcs intersecting pairwise in three vertices p1, p2 and p3. A spherical triangle is sometimes called an Euler
triangle. Spherical triangles have an orientation that is computed as the sign of the volume ‖p1,p2,p3, o‖ of tetrahedron
t(p1,p2,p3, o) is positive, with o the center of S .

The circumcircle CT1 of the spherical triangle T1 is the small circle that is formed by the section of S by the plane
defined by points p1, p2 and p3 (see Figure 1). The circumcircle CT1 divides the sphere in two parts. Consider a point
p of S :

• p is inside CT1 if ‖p1,p2,p3,p‖ < 0.
• p is outside CT1 if ‖p1,p2,p3,p‖ > 0.
• p is on CT1 if ‖p1,p2,p3,p‖ = 0.

There are exactly two antipodal points that are equidistant to p1, p2 and p3. We define the spherical circumcenter
of T1 as the point cT1 that is equidistant to p1, p2 and p3:

d(p1, cT1) = d(p2, cT1) = d(p3, cT1)

and that is inside CT1 . This corresponds to one of the two antipodal points that is the closets to p1, p2 and p3.
Consider a point set P = {p1, . . . ,pn} of n points of S . A triangulation T (P) of P is a set of 2n − 4 non overlapping

spherical triangles
T (P) = {T1,T2, . . . ,T2n−4}

J.-F. Remacle / Procedia Engineering 00 (2016) 000–000 3

p3

p1

p2

S

CT1

T1

cT2

p4

cT1

p3

p2

p1

Fig. 1. Delaunay triangulation on a sphere. Spherical triangle T (p1,p2,p3) is drawn with its spherical circumcircle C(T) that is empty. Every
triangle edge (in yellow, like p1p2) is a great circle.

that exactly covers S with all points of P being among the vertices of the triangulation.
A spherical triangle T j is Delaunay if its circumcircle is empty i.e. if no point pi of P lies inside T j. The Delaunay

triangulation DT(P) is such that every triangle T j of DT (P) is Delaunay. This construction is an actual Delaunay
triangulation [19,20]. An interesting interpretation of this kernel starts with the 3D orientation predicate that consists
in computing the sign of the volume of tetrahedron formed by points p j(xi, yi, zi), j = 1, . . . , 4:

sign

∣∣∣∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣ (1)

The 2D ’in-circle’ predicate that tells if point p4 belongs to the circum-circle of triangle formed by points p1, p2, p3
can be written as

sign

∣∣∣∣∣∣∣∣∣∣∣
1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4

x2
1 + y2

1 x2
2 + y2

2 x2
3 + y2

3 x2
4 + y2

4

∣∣∣∣∣∣∣∣∣∣∣ (2)

Predicate (2) has a form that is close to the one of (1). This is an expression of the standard link between 3D convex
hulls and 2D Delaunay triangulations: assume a 2D triangulation and lift it to the paraboloid z = x2 + y2. Then a 2D
triangle is Delaunay if it belongs to the convex hull of the lifted triangulation. In other words, a point p(x, y) belongs
to the circumcircle of a triangle t(p1,p2,p3) if its lifting p′(x, y, x2 + y2) on the paraboloid is below the plane defined
by the lifted triangle t′(p′1,p

′
2,p

′
3). This is verified by computing the sign of the volume of tetrahedron with vertices

p′1,p
′
2,p

′
3,p

′
4 using Equation (1). In the case of a triangulation on a unit sphere, predicate (1) becomes

sign

∣∣∣∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣ = sign

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4√

1 − x2
1 − y2

1

√
1 − x2

2 − y2
2

√
1 − x2

3 − y2
3

√
1 − x2

4 − y2
4

∣∣∣∣∣∣∣∣∣∣∣∣ . (3)

4 J.-F. Remacle / Procedia Engineering 00 (2016) 000–000

The lifting here is on the sphere and not on the paraboloid and the construction that is proposed is a Delaunay
triangulation.

3. A parallel Delaunay Kernel

A triangulation T (P) of P is a set of non overlapping triangles that exactly covers the convex hull Ω(P) with all
points of P being among the vertices of the triangulation.

Delaunay triangulations are popular in the meshing community because fast algorithms exist that allows to generate
DT(P) in O(n log(n)) complexity.

DTk

pk+1

C (DTk , pk+1) B(DTk , pk+1)

pk+1

DTk+1

Fig. 2. Delaunay triangulation DTk (left), Delaunay cavity Cp(DTk ,pk+1) (center) and DTk+1 = DTk − C(DTk ,pk+1) + B(DTk ,pk+1) (right).

Let DTk be the Delaunay triangulation of a point set Pk = {p1, . . . ,pk} ⊂ R
d. The Delaunay kernel is a procedure

that allows the incremental insertion of a given point pk+1 ∈ Ω(Pk) into DTk and to build the Delaunay triangulation
DTk+1 of Pk+1 = {p1, . . . ,pk,pk+1}. The Delaunay kernel can be written in the following abstract manner:

DTk+1 = DTk − C(DTk,pk+1) + B(DTk,pk+1), (4)

where the Delaunay cavity C(DTk,pk+1) is the set of all triangles whose circumcircles contain the new point pk+1 (see
Figure 2; the triangles of the cavity cannot belong to DTk+1) and the Delaunay ball B(DTk,pk+1) is a set of triangles
that fill the polyhedral hole that has been left empty while removing the Delaunay cavity C(DTk,pk+1) from DTk.

It is possible to build DTk+1 inO(n log(n)) operations. The critical operation in the Delaunay kernel procedure is the
construction of the cavity C(DTk,pk+1). A first element of the cavity τ is searched in DTk and the cavity is constructed
using a depth first search algorithm that starts at τ. Sorting the point set P in such a way that two successive points in
the set are close to each other geometrically allows to find τ in a number of operations that actually does not depend
on n. This can be done easily using space filling curves (a 3D Hilbert curve in our case). Yet, sorting all the points at
once is not optimal: it leads to formation of large Delaunay cavities. A biased randomized insertion order (BRIO) is
used that allows to leave enough randomness to ensure optimality [21]. It consists in sorting increasingly large subsets
of P along Hilbert curves.

Building the cavity actually takes a number of operations that essentially depends on the dimension (2D or 3D).
So, after the point set is sorted (O(n log(n)) operations), the insertion of the points takes O(n) operations.

It is possible to construct a multi-threaded version of the Delaunay kernel [15]. Assume M computational threads
that aim at inserting M points in the triangulation at the same time. At the end, each thread is going to insert n

M points.
The situation is of course not that simple: two points pi and p j can only be inserted at the same time in DTk if their

J.-F. Remacle / Procedia Engineering 00 (2016) 000–000 5

N = 104 N = 105 N = 106 N = 107

M = 1 0.049 0.344 3.051 33.947
M = 2 0.032 0.181 1.988 20.320
M = 4 0.020 0.140 1.143 12.297
M = 8 0.012 0.107 0.794 8.161

Table 1. Timings for computing a triangulation of a uniform set of N points on the sphere using M threads. Computations were done on a 8 core
Intel Xeon E5-4610 v2 @ 2.30GHz with with 128 GB of memory.

respective Delaunay cavities C(DTk,pi) and C(DTk,p j) do not overlap, i.e., if they do not have triangles in common.
A non-overlapping situation is more likely to happen if points pi and p j are not close geometrically. For that purpose,
we split the Hilbert curve into M equal parts and assign each part to one thread.

The multi-threaded Delaunay kernel can be written in the following abstract manner:

DTk+1 = DTk +

M−1∑
i=0

[
−C(DTk,pk+i n

M
) + B(DTk,pk+i n

M
)
]
. (5)

We have implemented the multi-threaded Delaunay kernel using OpenMP [22]. Two OpenMP barriers were used
at each iteration k. A first barrier is used after the computation of the M cavities: every thread i has to complete its
cavity C(DTk,pk+i n

M
) at iteration k in order to be able to verify that the cavity does not overlap other cavities. When

several cavities overlap, only the point corresponding to the smallest thread number is processed. The other points
are delayed to the next iteration. A second barrier is used after the construction of B(DTk,pk+i n

M
): every thread has to

finish computing the Delaunay kernel in order to start iteration k + 1 with a valid mesh. A two-level version of that
procedure is now available in the 3D Delaunay mesher of Gmsh [17].

A first example is presented here. A set of N points (xi, yi) i = 1, . . . ,N is initially distributed uniformally on the
unit circle x2 + y2 ≤ 1. Then, points on the sphere (Xi,Yi,Zi) are computed as

Xi = 2xi

√
1 − x2

i − y2
i

Yi = 2yi

√
1 − x2

i − y2
i

Zi = 1 − 2(x2
i + y2

i),

leading to a uniform density on the sphere. Mesh timings are presented in Table1. All computations were done on a
2,5 GHz Intel Core i7 with four computing cores.

4. Building a valid 1D mesh

The domain boundaries are extracted from geographical coastline databases. Due to their fractal nature, coastal
shapes can be extremely complex and contain many small details. A major difficulty when dealing with coastline is
that the resolution of the geographical database doest not match the desired mesh resolution. For example, the freely-
available GSHHG [23] database has a maximal resolution bellow 100m which is much too small for many numerical
applications. In ocean modeling, a good practice would be that there exists no isolated island and no channel in the
domain that are smaller than the mesh size. Small features should be removed from the description of the domain,
eventually in an automatic fashion. If such small features exist, (i) badly shaped elements would be created in such
channels or around those islands and (ii) the model will not be able anyway to capture relevant physics on features
that are below mesh size.

Assume a mesh size field h(x, y, z) that defines local sizes of mesh edges at point x, y, z of the domain. We propose
here a procedure that automatically creates a valid 1D mesh that: (i) does not overlap itself, (ii) contains no edges
significantly smaller than h and (iii) that defines the contour of a domain without water channels that are significantly
narrower than h (and in consequence, the boundary of the domain does no contain any angles that are strongly acute).

Figure 3 illustrates the different steps involved to build a coarse mesh from the high-resolution raw GSHHG data
of the western coastline of the Saaremaa Island (Estonia) in the Baltic sea.

6 J.-F. Remacle / Procedia Engineering 00 (2016) 000–000

58
°2

0′
N

58
°2

5′
N

58
°3

0′
N

21°50′E 21°55′E 22°0′E

0 2 4 6 8 10 km

(a) high-resolution raw data (white is water and grey is land) (b) and (c) generation of the coarse (1500m) geometry

(d) discretization of the coarse geometry (e) final mesh for a resolution of 1500m

final mesh for a resolution of 750m along the coastlines final mesh for a resolution of 150m along the coastlines

Fig. 3. Generation of a mesh coarser than the initial data.

J.-F. Remacle / Procedia Engineering 00 (2016) 000–000 7

(a) A high-resolution raw data set is initially loaded. A mesh size field h(x, y, z) is defined by the user. Coastline
data are made of edges. If an edge of the coastline data is locally larger than h, then it is refined.

(b) A Delaunay mesh is built on the sphere with all the boundary points of the raw data set. The user then selects one
point p that belongs to the region that has to be meshed. The unique curvilinear triangle τ that contains p is then
found by walking into the triangulation [24] and a depth-first search algorithm is applied to traverse the mesh,
starting at root τ. The algorithm stops whenever an edge smaller than h is crossed (green triangles on sub-Figure
(b) of Figure 3). This procedure defines a new set of edges that form a coarsened version of the domain that
has no small features. Note here that the initial boundary of the domain cannot be traversed because edge size
of the initial boundary is guaranteed to be smaller than h (see point (a) above). Finally, note that the Delaunay
mesh guarantees that two points closer to each other than h in the initial triangulation will either be connected by
an edge of the triangulation or connected by a series of edges smaller than h. This property prevents us to walk
across narrow channels or across the original boundaries.

(c) The external boundary of the green triangulation defines the new boundary of the domain of interest where all
small features have been removed. At this point, the remaining isolated islands smaller than the prescribed mesh
size are removed. There may exist edges inside the domain that are smaller than h. Such small edges are always
bounded by two green triangles: they are embedded in the domain. To avoid this situation, which is problematic
for the following steps, the whole boundary line (in red) is slightly (e.g. by h/10) shifted inside the domain.

(d) The red line is the actual boundary of the domain. It defines a domain with no narrow channels. Yet, it is not
suited for being used as the 1D mesh. It is thus discretized with a prescribed mesh size and a Delaunay mesh is
built with those points. This triangulation is not guaranteed to conform to the 1D discretization. Boundary edges
are then recovered by performing swaps, leading to a constrained Delaunay mesh.

(e) Finally, a Delaunay refinement algorithm described below is applied to generate the points inside the domain.

A side benefit of this approach is that it requires only a mesh size field h(x, y, z), the coordinates of one point inside
the domain, and a series of (close) boundary points. In particular the initial boundary lines do not have to describe a
correct topology. In other words, it is not a problem if two initial coastlines intersect each other. This makes it easy to
mix various data sets or cut through a domain.

5. Multi-threaded Delaunay refinement

At that point, a valid 1D mesh has been produced. The following stage of the meshing algorithm consists in
generating the surface mesh. For that, an “empty mesh” that contains all vertices of the 1D mesh is constructed on the
sphere. Then, every edge of the 1D mesh that is not present in the empty mesh are recovered using edge swaps.

A Delaunay refinement procedure is applied to generate internal points of the domain. Here, we use an edge based
approach. Every internal edge of the domain is “saturated” in the following way. Consider an edge pq of length
L = ‖q − p‖. A point x of pq has the form

x(u) = p(1 − u) + qu , u ∈ [0, 1].

The adimensional quantity

ρ(u) =
L

h(x(u))

represents the mesh density at point x i.e. the number of points per unit of length that should be used to saturate an
edge at point x. The following primitive

δ(t) =

∫ t

0
ρ(u)du

is very useful in what follows. We first note that δ(1) is the adimensional length of pq. Its rounded up value N = dδ(1)e
represents the number of subdivisions that is required to saturate edge pq i.e. to split pq with N sub-segments that
have an adimensional length close to one.

An adaptive trapezoidal integration scheme is used to compute δ(t) with a prescribed accuracy.

8 J.-F. Remacle / Procedia Engineering 00 (2016) 000–000

Algorithm 1: Adaptive trapezoidal rule that computes a piecewise linear representation of the size field along an
edge pq.

input : A mesh size field function h(x), an edge pq and a prescribed accuracy ε.
output: A discrete representation of δ(t) =

∫ t
0 ρ(u)du as a list of K points (t j, δ j), j = 1, . . . ,K.

Initialize a stack with one tuple {0, 1, h(x(0)), h(x(1))} with x(u) = p(1 − u) + qu.;
Initialize an empty vector of tuples that contains the piecewise linear representation of the size field;

while stack is not empty do
take tuple {u1, u2, h1, h2} at the top of the stack ;
pop this tuple out of the stack ;
compute u12 = (u1 + u2)/2 and h12 = h(x(u12));
if |1/h12 − 2/(h1 + h2)| > ε‖p − q‖ then

push tuple {u12, u2, h12, h2} at the top of the stack;
push tuple {t1, t12, h1, h12} at the top of the stack;

else
add tuple {u1, u2, h1, h2} to the result vector;

The primitive is numerically approximated by a piecewise linear function (see Algorithm 1). The N − 1 points
that form N segments of adimensional size close to one on pq are situated at positions x(t j), j = 1, . . . ,N − 1 with t j

computed in such a way that

δ(t j) = j
δ(1)
N

.

Points t j are computed using the piecewise approximation of δ(t).
At that point, it is interesting to give some justifications for that rather complex procedure. Mesh size functions h(x)

can be complex functions involving heavy computations. In the case of ocean modeling, h may involve the distance
to coastlines as well as local bathymetry [14]. It is thus mandatory to minimize the number of function calls to h.

In order to illustrate that procedure, consider again the Baltic sea and a mesh size field

h(x) =

hmin if d(x) < dmin

hmin +
d(x)−dmin
dmax−dmin

(hmax − hmin) if dmin ≤ d(x) ≤ dmax

hmax if d(x) > dmax

(6)

where d(x) is the distance to coastline (wall distance). The initial mesh (empty mesh) is depicted on Figure 4. On the
same Figure, an edge pq is shown that has an adimensional length of δ(1) = 92.12 (N = 93). Only K = 16 points
were necessary to represent ρ with a prescribed accuracy of ε = 5%. Both ρ and δ are represented on Figure 4. The
corresponding 92 points x j that saturate pq are plotted in red on the Figure as well.

At stage i of the refinement process, all internal edges of the domain are saturated, producing a point set Pi. Points
are spaced rightfully on edges of the existing mesh. Yet, there is no guarantee that points belonging to different
edges are not too close to each other. Here, some filtering is required. Two approaches for filtering the points have
been investigated. At first, a space search structure has been used (a RTree [25]). Using such a structure involves
extra-storage. Insertions on a RTree in parallel is not an easy matter as well.

A more straightforward approach has been developed. The Delaunay kernel is applied to all points pk of P j without
filtering. Consider triangulation DTk−1 and the Delaunay cavity C(DTk−1, pk) relative to point pk that has to be inserted
in the mesh. There exist no points of DTk−1 that are closer to pk than the points of C(DTk−1, pk) thanks to the Delaunay
property. Point pk is inserted if and only if no short edge is created during the insertion. It is thus only necessary to
check points of the cavity in the filtering process.

In our implementation, both approaches have shown to provide similar serial performances. Yet, the approach
based on the Delaunay kernel is clearly advantageous: (i) it is way easier to code (ceteris paribus, a solution that
is simpler to code is always better), (ii) it does not require any overhead and, (iii) more important, it enjoys the
multi-threaded implementation of the Delaunay kernel.

J.-F. Remacle / Procedia Engineering 00 (2016) 000–000 9

p

q

Fig. 4. Initial “empty mesh” of the Baltic sea. Picture shows a zoom around an edge pq. Points x j, j = 1, . . . , 92 that saturate the edge have been
drawn in red. Computation of ρ(t) and δ(t) on edge pq are shown as well. Only K = 16 evaluations of h(x) were required to obtain a relative error
of 5% on ρ.

Figure 5 illustrates the Delaunay refinement procedure on the Baltic sea. Final mesh of 2, 345, 823 triangles has
been generated in 16 seconds on one thread. The size field function h that has been chosen is highly computational
intensive: The Delaunay kernel takes only 5, 44 seconds. Sorting the points along a 3D Hilbert curve takes 1, 29
seconds and saturating the edges takes 9, 25 seconds which is way more than half of the total CPU time. Note
that parallelizing this stage of the algorithm is actually trivial. The algorithm converges when every edge has an
adimensional length less or equal to one. Eight iterations were necessary for convergence. Most of the points were
inserted during the two first iterations (see Figure 5). Images of the final mesh are shown if Figure 6.

6. World ocean

In this section, we have generated a mesh of the whole world ocean with a global resolution of hmin = 3km. A
larger mesh size of hmin = 30km was chosen far away from the coast like in Equation (6) (Figure 7). The final mesh
contains 4,978,243 triangles and has been generated in about 50 seconds. About 30% of the total time was taken for
generating the initial Delaunay mesh of the data. In the Delaunay refinement procedure 14.5 seconds were necessary
to generate the points (saturation of the edges), 2.76 seconds were necessary to sort point sets P j and 8.44 seconds
were used in the Delaunay kernel.

10 J.-F. Remacle / Procedia Engineering 00 (2016) 000–000

Triangulation of the 1D mesh 1 refinement step (471,312 points)

2 refinement steps (873,028 points) 3 refinement steps (969,283 points)

8 refinement steps (988,066 points) 8 refinement steps and smoothing

Fig. 5. Saturation of the edges. The final mesh (iteration 8) contains 2,345,823 triangles.

7. Conclusions

This paper presents an original algorithm that allows to generate meshes of domains defined by coastline data on
the sphere. The main novelties of the approach are (i) the treatment of input data, (ii) the multi-threaded nature of the
algorithms and (iii) the Delaunay kernel on the sphere with automatic filtering. The meshes are already used to solve

J.-F. Remacle / Procedia Engineering 00 (2016) 000–000 11

shallow water equations on coastal domains using the SLIM model [14]. The extension to quadrilateral meshing is the
following step in our developments: quad meshes are beneficial in our applications because they can be aligned along
coastlines and because they have a better computational efficiency, especially using Discontinuous Galerkin schemes.

The code that has been used here is a self consistent piece of code that will be released soon as an open source. It
will be part of the Gmsh distribution.

Parallel computations will be presented in further communications.

References

[1] Stephen M. Griffies, Claus Böning, Frank O. Bryan, Eric P. Chassignet, Rüdiger Gerdes, Hiroyasu Hasumi, Anthony Hirst, Anne-Marie
Treguier, and David Webb. Developments in ocean climate modeling. Ocean Modelling, 2:123–192, 2000.

[2] M.D. Piggott, G.J. Gorman, and C.C. Pain. Multi-scale ocean modelling with adaptive unstructured grids. CLIVAR Exchanges - Ocean model
development and assessment, 12(42), 2007. http://eprints.soton.ac.uk/47576/.

[3] Laurent White, Eric Deleersnijder, and Vincent Legat. A three-dimensional unstructured mesh finite element shallow-water model, with
application to the flows around an island and in a wind-driven, elongated basin. Ocean Modelling, 22(1):26–47, 2008.

[4] Sergey Danilov, Gennady Kivman, and Jens Schröter. Evaluation of an eddy-permitting finite-element ocean model in the north atlantic. Ocean
Modelling, 10:35–49, 2005.

[5] C. Le Provost, M. L. Genco, and F. Lyard. Spectroscopy of the world ocean tides from a finite element hydrodynamic model. Journal of
Geophysical Research, 99:777–797, 1994.

[6] R. F. Henry and R. A. Walters. Geometrically based, automatic generator for irregular triangular networks. Communications in numerical
methods in engineering, 9:555–566, 1993.

[7] Florent Lyard, Fabien Lefevre, Thierry Letellier, and Olivier Francis. Modelling the global ocean tides: modern insights from FES2004. Ocean
Dynamics, 56:394–415, 2006.

[8] S. C. Hagen, J. J. Westerink, R. L. Kolar, and O. Horstmann. Two-dimensional, unstructured mesh generation for tidal models. International
Journal for Numerical Methods in Fluids, 35:669–686, 2001. Printed version in Richard’s office.

[9] Sebastien Legrand, Eric Deleersnijder, Emmanuel Hanert, Vincent Legat, and Eric Wolanski. High-resolution, unstructured meshes for hydro-
dynamic models of the great barrier reef, australia. Estuarine, Coastal and Shelf Science, 68:36–46, 2006.

[10] Sebastien Legrand, Vincent Legat, and Eric Deleersnijder. Delaunay mesh generation for an unstructured-grid ocean circulation model. Ocean
Modelling, 2:17–28, 2000.

[11] G.J. Gorman, M.D. Piggott, and C.C. Pain. Shoreline approximation for unstructured mesh generation. Computers and Geosciences, 33:666–
677, 2007.

[12] Jonathan Lambrechts, Richard Comblen, Vincent Legat, Christophe Geuzaine, and Jean-François Remacle. Multiscale mesh generation on the
sphere. Ocean Dynamics, 58(5-6):461–473, 2008.

[13] Maximiliano G Sassi, AJF Hoitink, Benjamin de Brye, Bart Vermeulen, and Eric Deleersnijder. Tidal impact on the division of river discharge
over distributary channels in the mahakam delta. Ocean Dynamics, 61(12):2211–2228, 2011.

[14] Jonathan Lambrechts, Emmanuel Hanert, Eric Deleersnijder, Paul-Emile Bernard, Vincent Legat, Jean-François Remacle, and Eric Wolanski.
A multi-scale model of the hydrodynamics of the whole great barrier reef. Estuarine, Coastal and Shelf Science, 79(1):143–151, 2008.

[15] Jean-François Remacle, Vincent Bertrand, and Christophe Geuzaine. A two-level multithreaded delaunay kernel. Procedia Engineering,
124:6–17, 2015.

[16] Paul Louis George. Improvements on delaunay-based three-dimensional automatic mesh generator. Finite Elements in Analysis and Design,
25(3):297–317, 1997.

[17] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities.
International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[18] DT QGis. Quantum gis geographic information system. Open Source Geospatial Foundation Project, 2011.
[19] Robert J Renka. Algorithm 772: Stripack: Delaunay triangulation and voronoi diagram on the surface of a sphere. ACM Transactions on

Mathematical Software (TOMS), 23(3):416–434, 1997.
[20] Manuel Caroli, Pedro MM de Castro, Sébastien Loriot, Olivier Rouiller, Monique Teillaud, and Camille Wormser. Robust and efficient delaunay

triangulations of points on or close to a sphere. In International Symposium on Experimental Algorithms, pages 462–473. Springer, 2010.
[21] Nina Amenta, Sunghee Choi, and Günter Rote. Incremental constructions con brio. In Proceedings of the nineteenth annual symposium on

Computational geometry, pages 211–219. ACM, 2003.
[22] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory programming. Computational Science &

Engineering, IEEE, 5(1):46–55, 1998.
[23] P Wessel and WHF Smith. Gshhg–a global self-consistent, hierarchical, high-resolution geography database. Honolulu, Hawaii, Silver Spring,

Maryland.(URL: http://www. soest. hawaii. edu/pwessel/gshhg/(accessed 10 January2013), 2013.
[24] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. International Journal of Foundations of Computer Science,

13(02):181–199, 2002.
[25] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree: an efficient and robust access method for points

and rectangles, volume 19. ACM, 1990.

http://eprints.soton.ac.uk/47576/

12 J.-F. Remacle / Procedia Engineering 00 (2016) 000–000

Fig. 6. Images of the final mesh of the Baltic sea.

J.-F. Remacle / Procedia Engineering 00 (2016) 000–000 13

Fig. 7. Images of the mesh of the world ocean (top left) with a zoom on the Mediterranean sea (bottom) and on the Aegean sea (top right).

	Introduction
	Delaunay triangulation on the sphere
	A parallel Delaunay Kernel
	Building a valid 1D mesh
	Multi-threaded Delaunay refinement
	World ocean
	Conclusions

